Physiological Response of Three Grapevine Cultivars Grown In North-Western Poland to Mycorrhizal Fungi

  • G. Mikiciuk Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin
  • L. Sas-Paszt Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100 Skierniewice
  • M. Mikiciuk Department of Plant Physiology and Biochemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin
  • E. Derkowska Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100 Skierniewice
  • P. Trzciński Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100 Skierniewice
  • P. Ptak Department of Plant Physiology and Biochemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin
  • U. Chylewska Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin
  • M. Statkiewicz Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin
  • A. Lisek Department of Microbiology, Research Institute of Horticulture, Pomologiczna 18, 96-100 Skierniewice

Abstract

West Pomerania (Poland) is located near the northern boundary of the range of viticulture (the coldest zone A). Unfavourable weather conditions can pose a serious threat to the cultivated vines. One of the treatments used to increase the tolerance of plants to abiotic and biotic stresses is inoculation with symbiotic soil microorganisms. This paper focuses on the influence of mycorrhization on the changes in soil microbiology, the degree of colonization of roots by mycorrhizal fungi, and on selected physiological
parameters of three grapevine cultivars (‘Pinot Noir’ on SO4 rootstock, ‘Regent’ on 5BB rootstock, and ‘Rondo’ on 125AA rootstock). The applied inoculation had a stimulating effect on the colonization of roots by arbuscular mycorrhizal (AM) fungi, as evidenced by higher mycorrhizal frequency and intensity in the mycorrhized plants. The mycorrhizal treatment increased the intensity of CO2 assimilation and transpiration. Mycorrhization reduced the efficiency of photosynthetic water use and increased stomatal conductance for water in the grapevines tested. The mycorrhizal treatment did not affect the concentration of assimilation pigments in vine leaves. The mycorrhization of grapevines had no effect on the values of initial fluorescence, maximum fluorescence, the maximum potential efficiency of photochemical reaction in PS II, the size of the pool of reduced electron acceptors in PS II, nor on the value of the PS II vitality index.

Downloads

Download data is not yet available.

References

Angelini G., Ragni P., Esposito D., Giardi P., Pompili M. L., Moscardelli R., Giardi M. T. 2001. A device to study the effect of space radiation on photosynthetic organisms. Phys. Med. 17 (1), 267 - 268.

Arnon D. J., Allen M. B., Whatley F. 1956. Photosynthesis by isolated chloroplast. Biochim. Biophys. Acta 20, 449-461.

Artursson V., Finlay R. D., Jansson J. K. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8(1), 1-10.

Aslanpour M., Baneh H.D., Tehranifar A., Shoor M. 2016. The effect of micorrhized fungi on the amount of glicyne betaine, soluble sugar, proline, leaf water content and leaf chlorophyll of the white seedless grape under drought stress conditions. Inter. J. Adv. Biotechnol. Res. 7(3), 1119 - 1133.

Baker N. R., Resenquist E. 2004. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607-1621.

Bertolde F. Z., Almeida A. A., Pirovani C. P., Gomes F. P., Ahnert D., Baligar V. C., Valle R. R., 2012. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photos. 50, 447-457.

Bjorkman O., Demmig B.1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170, 489-504.

Bolhár – Nordenkampf H. R., Öquist G. 1993. Chlorophyll fluorescene as a total in photosynthesis research. In: Photosynthesis and production in a changing environment. Eds D. O. Hall et al. Chapman and Hall, London, 193-206.

Borkowska B. 2005. The photosynthetic activity of micropropagated strawberry plants inoculed with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol. Plant. 24, 365-370.

Borkowska B. 2010. Fizjologia Roślin sadowniczych strefy umiarkowanej t.1 (red. Jankiewicz L , Lipecki J.) Mikoryza. PWN Warszawa, 224-250.

Deepika S., Kothamasi D. 2015. Soil moisture - a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25, 67-75.

Derkowska E., Sas Paszt L., Sumorok B., Dyki B. 2013. Colonisation of apple and blackcurrant roots by arbuscular mycorrhizal fungi following mycorrhisation and the use of organic mulches. Folia Hort. 25, 117-122.

Derkowska E., Sas Paszt L., Dyki B., Sumorok B. 2015. Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Adv. Microbiol., 5(1), 54-64. DOI: 10.4236/aim.2015.51006

Donkó Á., Zanathy G., Èros-Honti Z., Villangó S. and Bisztray G. D. 2014. Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary). Acta Universitatis Sapientiae, Agric. Env. 6, 13.

Gould W.D. , Hagedorn C., Bardinelli T.R., Zablotowicz R.M. 1984. New selective media for enumeration and recovery of fluorescent Pseudomonads from various habitats. Aplied Env. Microbiol., 49(1), 28-32.

Hager A., Mayer – Berthenrath T. 1966. Die Isolierung und quanttaive Bestimung der Carotenoide und Chlorophyll von Blatern, Algea und isolierten Chloroplasten mit Hilfe Dunnschichtchromatographischer Methoden. Planta, Berlin 69, 198-217.

Holland T. C., Bowen P., Bogdanoff C., Hart M. 2014. Arbuscular mycorrhizal fungal communities associated with Vitis vinifera vines under different frequencies of irrigation. Americ. J. Enol. Viticul., 65, 222-229.

Kalaji H. M., Łoboda T. 2007. Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ. 53, 511-516.

Kalaji H. M., Łoboda T. 2010. Fluorescencja chlorofilu w badaniach stanu fizjologicznego roślin. Wydawnictwo SGGW, Warszawa.

Karagiannidis N., Velemis D., Stavropoulos N. 1997. Root colonization and spore population by VA-mycorrhizal fungi in four grapevine rootstocks. Vitis, 36, 57-60.

Kaschuk G., Kuyper T.W., Leffelaar P.A., Hungria M., Giller K.E. 2009. Are the rates of photosynthesis stimulated by the carbon sink strenght of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Bioch. 41, 1233-1244.

Krause G. H., Weiss E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349.

Lichtenthaler H. K., Wellburn A., R. 1983. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11: 591-592.

Miransari M. 2011. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl. Microbiol. Biotechnol., 89(4), 917-930.

Nicolas E., Maestre-Valero J.F., Alarkon J.J., Pedrero F., Vincente-Sanchez J., Bernabe A., Gomez-Montiel J., Fernandez F. 2014. Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. J. Agric. Scien. DOI: 10.1017/S0021859611400080X. p. 13

Petit E., Gubler W. D. 2006. Influence of Glomus intraradices on Black Foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Disease, 90, 1481-1484.

Sas Paszt L., Malusa E., Grzyb Z., Rozpara E., Wawrzyńczak P., Rutkowski K. P., Zmarlicki K., Michalczuk B., Podlaska B., Dariusz Nowak D. 2010. Środowiskowe i zdrowotne znaczenie ekologicznej produkcji owoców. Post. Nauk Rol. 1, 109-121.

Smith S. E., Read D. J. 2008. Mycorrhizal symbiosis.Third Edition. Elsevier 815 p.

Stój A., Czernecki T., Domagała D., Targoński Z. 2017. Application of volatile compound analysis for distinguishing between red wines from Poland and from other european countries. S. Afr. J. Enol. Vitic., 38 (2), 245-263.

Sumorok B., Sas Paszt L., Głuszek S., Derkowska E. and Żurawicz E. 2011. The effect of mycorrhization and mulching of apple trees ‘Gold Milenium’ and blackcurrant bushes ‘Tiben’ on the occurrence of arbuscular mycorrhizal fungi. J. Fruit Ornam. Plant Res., 19, 35-49.

Toljander J. F., Artursson V., Paul L. R., Jansson J. K., Finlay R. D. 2005. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters, 254(1), 34-40.

Trouvelot A., Kough J.L., Gianinazzi-Pearson V., 1986. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V., Gianinazzi S. (eds), Physiological and Genetical Aspects of Mycorrhizae. INRA, Paris, 217-221.

Wang G. M., Stribley D. P., Tinker P. B. and Walker C. 1993. Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol., 124, 465-472.

Wilk K. 2011. Polski rynek win w świetle zmian w krajowych i wspólnotowych uregulowaniach prawnych. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania. 22, 135-148.

Wu Q.S., Xia R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant. Physiol. 163, 4, 417-425.

Wu Q.S., Zou Y.N. 2010. Beneficial roles of arbuscular mycorrhizal in citrus seedlings at temperature stress. Scientia Hort. 125, 289-293.

Yu B., Zhao C. Y., Li J., Li J. Y., Peng G. 2015. Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding. Photosynth. 53, 110 - 117.

Zhu X.C., Song F.B., Liu S.Q., Liu T.D., Zhou X. 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58, 4, 186-191.

Published
2018-12-12
Section
Articles